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Testing predictability criteria in avalanches
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We study a cellular automaton that presents a behavior similar to that of avalanches in sand piles. The size
distribution of these events presents a clear separation between small and large avalanches; the former showing
a power-law kind of behavior common to these systems. In this article we compare different schemes of
possible predictions of the large events. One, using an algorithm proposed by Rosendahlaiv:Ratledge
[Phys. Rev. Lett73, 537 (1994], follows the activities of small avalanches between consecutive large ava-
lanches; others analyze the distribution of time intervals between consecutive large events, and the distribution
of small events between consecutive large avalan¢®d€963-651X96)05710-9

PACS numbes): 05.40+j, 46.10+2z, 91.30.Px

I. INTRODUCTION based on the statistics of the small avalanches preceding a
large one. That is to say, their experiment shows that after
The predictability of earthquakes is a problem that needsadding grains to the pile many small avalanches occur before
no justification. The knowledge of the details of a fracture ofevery large one is generated, with a clear cut separation as to
a geological fault, however, is beyond present capabilitiethe meaning of “small” and “large”(see below. Their sug-
either theoretical or experimental. But seismological detailgjestion is to use the statistics of the occurrence of the small
aside, it appears clear that an ubiquitous characteristic avalanches as predictors of the large ones. However, because
earthquakes is that there exist long periods of accumulatioof the difficulty of the experiment, Rosendahl, Vekand
of stress, followed by sudden, large, catastrophic events iRutledge report only 11 large avalanches and, therefore, the
which a large displacement of the fault occurs, releasingesults of their test cannot be considered conclusive, as Sam-
large amounts of accumulated energy. The fault is then “remis and Carlsofil2] have already pointed out. In this article
set” and the process repeats itself. A further important charwe analyze the results of a cellular automaton that shows the
acteristic is that such a process of loading and releasing, doeame qualitative features as those of real avalandsiswe
not appear to be periodic at all. Compounded with theseise it to test different predictability criteria.
problems is the lack of enough data that would allow us to Before getting into the details of the prediction methods,
have some form of prediction based on an analysis of theve point out that the present cellular automaton behaves,
statistics of the temporal series of such events; suffice to salyom a “macroscopic” point of view, in a remarkably simi-
that during the last 100 years there have occurred, in thar way to sandpiles in a rotating cylinder, as shown in Refs.
whole world, only about 1000 earthquakes with magnitude$13,14], and to the classical conical sandpile, as we shall
greater than 7 in the Richter scdlf]. show here. That is, the time behavior of a global variable in
In recent years there has been, in the physics communityhe automaton, namely, its mean energy, is quite similar to
a resurgence in investigating the earthquake prolj2rb]  the time behavior of the angle of the surface in a rotating
both with models and with laboratory experiments. Notably,cylinder[7,13], or the number of grains in the classical coni-
on the experimental side, research has been focused on theal sandpilg9].
study of avalanches in sandpiles with a variety of experi- In a previous repoift13], we also showed that, if we treat
mental setups, such as, rotating drufgs-8] or grain-by- the mean energy of the automaton in a coarse-grained scale
grain added sandpild9—11]. The obvious relationship with so that only large avalanches are relevant, its evolution is
the earthquake dynamics is the fact that the avalanches als@curately described as a stochastic Markov process. There is
show a characteristi@periodi¢ loading and releasing pro- good evidence, in agreement with actual experiments, that
cess. An important feature of laboratory or numerical experithe same is true for the behavior of the mean angle of the
ments is that, in principle, it is possible to generate arbitrarilysurface of sand piles in rotating cylind¢id. Thus the study
large time series and, hence, robust statistics. of the automaton has been useful to achieve a better under-
In a recent article Rosendahl, Vékiand Rutledgd9], standing of the statistical dynamics of the sandpile in the
studying the dynamics of grain-by-grain added sandpilesotating drum experiment.
proposed an algorithm for prediction of large avalanches As we shall show, the automaton also has the ability to
reproduce the macroscopic behavior of avalanches in the
conical sandpiles. That is, it shows the occurrence of large,

*Electronic address: emg@hp.fciencias.unam.mx catastrophic events preceded by many small ones. Due to
"Electronic address: peral@servidor.dgsca.unam.mx this similarity, and to the fact that we get much better statis-
*Electronic address: romero@sysul2.ifisicacu.unam.mx tics in less time, we use the automaton to evaluate the pre-
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diction algorithm reported by Rosendahl, Vekand Rut- 03
ledge [9] mentioned above, based on the activity of the .
system preceding a large event. We also discuss two more 17 L
different possibilities to predict large events by considering | ., . ois .
the time elapsed since the last large event occurred, and thez ‘-.’u, ' s
number of small events before a large one. See also Ref% -3 ¢ ‘.,:'\ + 025
[12]. 2 \,‘ + 075 s

In a sense, the general result of this study is on the nega- T ‘c,‘
tive side. That is, as we shall show, it appears that none of | *&&
the methods is capable of predicting with acceptable confi- o S L. e 2
dence. A combination of all of them would probably be more 6 * : i ¥ ; i y -
appropriate. However, we do not believe that the problem 0 05 1 52 25 3 35 4
lies in the different methods, but rather, the “failure” may logls)

result because the observed variatitee angle of the pile, ) o _
the number of grains in the pile, or the energy of the automa- FIG. 1. .Normallzed size distributiorf3(s) of avalanch_es of size
ton), behaves as a stochastic process. And this, being a con.proken sites foe=0.15, 0.25, and 0.75. Base of log is 10.
sequence of having averaged out the complicated dynami
of the many small degrees of freedom beneath the glob
variable. These conclusions seem to be supported by the facf
mentioned above, that in a coarse-grained scale the lar
avalanches are very accurately described as a Markov p
cess. But given the richness of the phenomena at hand,
cannot completely rule out éonlineaj deterministic de-
scription nor a predictive method based on the time statistic
of the events. To add to the elucidation of these differen
aspects is part of the motivation and relevance of the prese
study.

eaks having no unbroken neighbors able to receive its en-
rgy since they have already been broken during the process.
hsuch a case, and due to the fact that no site can remain
Yith its energy above the thresholq, the rule forces the
"%ite to lose its energy, which is simply dissipated out of the
V\é?lstem. While the first energy-dissipation mechanism looks
like a natural way for the system to lose energy, resembling
the loss of grains in a pile, the second one is inspired by the
E‘racture of a fault in which a stressed site breaks releasing its
I%tnergy to the surrounding mediurh5]. From the point of
view of the automaton, these rules are consistent with the
condition that broken sites must remain in such a state during
Il. THE AUTOMATION fthe evolutiqn of an avalanche. If thi; rule is removed, that is,
if broken sites can be “healed” during the avalanche, then,
Although the description of the automaton has been givetthe automaton displays very different macroscopic behavior
in other reportd7,13,19, it is included here for complete- from the one we are interested[ih5]; as a matter of fact, it
ness. The automaton is defined by N lattice where at  then shows self-organized criticalifyl6], and it has been
each sitei,j) a scalar quantity;; , called here “energy,” is  shown that avalanches in granular media do not belong to
defined. At every time step, a fixed amount of eneegig  this clasq17].
added to a randomly chosen site. If the energy of the site is It turns out that, with the rules given above, avalanches
below a given thresholdi., time is advanced one unit and can be classified as small or large. An avalanche is consid-
another site is chosen at random; otherwise, the site breaksted as large if it covers practically the whole system; oth-
passes its energy in equal parts to its nearest unbroken neigberwise it falls into the small category. We find that a large
bors, and has its energy reset to zero. The event or avalancBgent means that its size is at least 96% of the size of the
will propagate if the energy of a site, by means of receivinglattice, and a small event means that it covers at most 25% of
energy from a broken one, reaches or exceeds the threshdlte size of the lattice. Events whose sizes fall outside these
h.. In this case, the site also breaks, and distributes its erranges are seldom seé¢see Fig. 1 While the size of the
ergy to its nearest unbroken neighbors. The propagation dérge avalanches is almost independent of the valug thfe
the event halts when there is no site with energy allgve size of the small avalanches does depend on it: The smaller
then, time is advanced one unit. While the avalanche is ithe value ofe, the smaller the sizes of the small avalanches.
progress, time is not advanced at all and broken sites remaifor instance, as shown in Fig. 1, fer0.15 the maximum
in that state. It is of interest to point out that in the experi-size of the small events is approximately 35, while with
ments of Rosendahl, Vekiand Rutledg¢9] “time” hasthe  €=0.25 and 0.75 it is 200 and 1200, respectively. We de-
same meaning as here: “time” is advanced until the ava<cided to usee=0.25 for the calculations of this work, as a
lanche has finished. Because all energy quantities can bmmpromise of being small enough to represent a somewhat
normalized withh,, the threshold for rupture is always set to continuous load of the system, but not too small as far as
1.0. Thuse, and anyh;; are less than one. Results reportedcomputing time is concerned, and at the same time having a
here were obtained witk=0.25, andN=64. clear cut separation between small and large avalanches. We
There are two mechanisms for the system to lose energwlso mention that the dissipative mechanism in an isolated
The first one takes place when sites at the border breakonborder site, occurs essentially during large avalanches
Related to these sites, there are two kinds of neighli@ys; only; thus it does not influence the avalanche size distribu-
those laying on the lattice, artd) hypothetical ones outside tion.
of the lattice. The rule allows sites at the border to pass part The “experimental output” of the automaton is the time
of their energy to such hypothetical sites too. The seconavolution of the total energy, normalized by the size of the
mechanism takes place when a site, not located at the bordesystem; that is, the mean energy per site given by
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FIG. 2. Mean energy per sitd(t) as a function of time step FIG. 4. Total cumulative number of evendqt), regardless of
showing buildup periods ending with a large event. Changes iftheir size, as a function of time step. Discontinuities on the slope
H(t) due to small avalanches cannot be seen at this scale. indicate the occurrence of a large event.

1 size in this range is negligible<10™’). The distribution of
H(t)= N2 E hij . (2.2 small avalanches follows a power-law decay behavior, com-
1 mon to these systen{9,15,19, with an exponent equal to

: 3.5x0.04
The evolution ofH(t), the macroscopic variable, resembles

an ir_regu!ar sawtoo_th_type of behavior characterize_d by load- IIl. PREDICTION METHODS

ing time intervals limited by two large events. During each

loading interval, small avalanches occur most of the time; Given the irregularity of the occurrence of large ava-

some of them taking away energy from the system and othlanches in the experimental situations discussed above and in

ers just redistributing it. Figure 2 shows a typical time se-the automaton as well, the problem seems to be a formidable

guence ofH(t); at the scale of the figure, small events areone as far as the prediction is concerned. But, as Rosendahl,

not visible. As the energy of the system increases, the probvekic, and Rutledge observed, the rate of occurrence of

ability for an avalanche to propagate through the whole syssmall avalanches increases very rapidly as a large avalanche

tem becomes larger. The higher the energy of the system its imminent, and the suggestion is to monitor the small ac-

the more frequent the small events are, until a large everiivity in order to see some kind of regularity that would

resetsH to zero. allow us to predict the occurrence of the large events. In this
For each avalanche, we determine its size, defined as tlsection, we discuss two types of predictive criteria. One is

number of sites involved in an event, from which we calcu-that used by Rosendahl, Vékiand Rutledgg9] and the

late the normalized size distribution. Figure 3 shows such ather is a probabilistic approach based on the statistics of the

distribution, fore=0.25, obtained from a run of the automa- process.

ton of about 7.5 1C° time steps involving approximately

2.9x10" events of any size; 0.5% of them being large events. A. Activity algorithm

The separation of small and large avalanches is clear; for this

run, there were scarcely 100 avalanches of size in the ranqﬁ

of 2% to 97% of the size of the systefthat is, between 100

to 4000, which implies that the probability for an event of a

Following Rosendahl, Vekicand Rutledg¢9], we define
e total activityA(t) as the cumulative number of events of
any size as a function of time, given that a0 a large event
took place. Figure 4 shows a typical output At). There is
a remarkable similarity with the corresponding figure shown
in Ref.[9]. One can observe thdi(t) is a function whose
R slope changes discontinuously when a large avalanche oc-

., curs. That is, after a large event has taken place, the system
N is left with no energy(in the sandpile, it is left at an angle of
reposeg; thus, it takes some time for all the empty sites to get
some energy and small events are not very frequent: the
slope of A(t) is very flat after a large event. As time
progresses, the system acquires a higher load and the rate of
. small events also increases, the slopeAdgt) becoming
, , ) Aammania arx A oa ‘ steeper, until a large avalanche releases the accumulated en-
o o5 1 15 2 25 3 35 a4 ergy of the system. And again, the slope A&ft) changes
discontinuously.

In order to make an analysis of the activig(t), and
FIG. 3. Normalized size distributioR(s) of avalanches of size ~ since the loading intervals between consecutive large ava-

s broken sites fore=0.25. Small avalanches scale according to alanches have different durations in time, we normalize the
power-law decay with exponent 329.04. Base of log is 10. latter as followq9]: Consider a given interval between the

log[P(s})]

b N b s A b D

fog[s]
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FIG. 5. Activities of two intervals taken from a particular run of
the automaton, and the averagér), solid line, of all the interval FIG. 7. Partial activities, from one of the interval activities
activities in that run as functions of the normalized time stépee  shown in Fig. 5, at 40, 60, 80, and 90% of the interval compared to
text for detailg. The latter scales according to a power law with the avalanche regio(AR) (see text for details The first two are
slope 3.6:0.04. not completely inside the avalanche region.

occurrence of two Iarg_e avalanch_es. LM be the to_tal ability for an event of the size of the systefig. 3, the 16
number of avalanches in such an interval, and\itbe its  ayalanches used here were of size equal to, or greater than,
duration. Next, at every time step within the given loadinggg go4 of the system’s size. The effect that the choice of this
interval, we definea(7), as the fraction of events that have {hreshold has on the avalanche region, and therefore on the
occurred up to that time, with the time fraction of the yegyits obtained when applying this algorithm, will be dis-
interval at that time step. That is, the cumulative number of,,ssed in Sec. IV.

events is normalized withM, and the time withAT. We The prediction method consists in following the activity
call a(7) the activity of the given interval. Figure 5 shows of ap interval after a large event has taken place. Then, by
two particular activitiesa(r) obtained from a run of 810°  |sing the information given in Fig. 6, decide whether or not
time steps involving abouti@oadlng intervals. Also shown 4 large avalanche will occur in the next time step, thus
in this figure is the average(r) of the activities for all the sounding an alarm. This is done as follows: L&v’ and
loading intervals. As is the case with the grain-by-graina1' pe the current number of small events and the current
added sandpil¢9], a(7) also follows a power law; in the {ine, respectively, after a large avalanche has occurred. Let
present case the exponent is 8(L04. o us now definex(7') as the fraction of events that have oc-

If we now plot all the activities of the f0loading inter-  c\ired up to the fraction time’, with « normalized with
vals used to obtain the averager), then, we see that the Ap’ ands with AT'. We call a(7') the partial activity of
plane(ra) is divided into three regiongd]. One region lies  the interval. As the end of an interval comes near, that is, as
above the upper envelope of all thén)'s, the second region 4 large avalanche approachesr’) should become closer to
lies below the .Iowef envelope, and the third one—callt_'-zd theg corresponding(7). Hence, there may be some threshold
avalanche region—is bounded by the two enveldpes Fig. (g distinguish an interval that is about to end from an interval
6). Smcg th_e probability of occurrence for a large eventyat is far from its end. In other terms, when plottingr)
whose size is equal to, or less than, 99.894090 of the  5pe may expect that, if the corresponding interval is near to
system’s size is three orders of magnitude less than the proke end,a(7') should be inside the avalanche region.

Following Rosendahl, Vekjand Rutledge an alarm for a
large avalanche is issued if the currert’') is completely
within the avalanche region. Figure 7 shows partial activities
at 40, 60, 80, and 90% of the total duration of the interval
corresponding to the firgt(7) shown in Fig. 5, compared to
the avalanche region. It is seen in this figure that for 40% and
60% of the loading interval a small part of the curve is out-
side the avalanche region just at the very end of the interval;
yet, the large avalanche is far from taking place. Now, for the
80% and 90% cases, the curves are completely inside the
avalanche region, which just indicates that the large event
will take place soon, but it is certainly not imminent.

In order to evaluate how reliable it is to sound the alarm
when the partial activity is within the avalanche region, we
determined an average prediction for large avalanches in the

FIG. 6. Envelopes of the interval activities defining the ava-following way: We let the automaton run fop&L0° time
lanche region for the automatdsee text for details also shown is ~ Steps that involved about 1@oading intervals. After every
the averagex(7) of the activities, dashed line. small avalanche in a given loading interval, the correspond-
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FIG. 8. Average of large event predictions as a function of the

normalized time step (see text for details The curve was obtained
taking into account 1000 loading intervals.

FIG. 9. Distribution of the time elapsed between the last large
event and the first false alarm in the next loading interval. Time is
given in terms of the percentage of the length of the interval.

ing partial activitya(7') is constructed. It(7') is completely ) _ )
within the avalanche region, a YES or 1 value is assigned t®etween timed andt+1, given that at time=0 a large
that time; otherwise a NO or 0 value is used. At the end ofeVent took place, while the distributid?(n) gives the prob-
the interval, time is normalized using its time duration. Asability that a given interval will haven small events before
expected, it turns out that the number of false alarms varief)€ large one. From these distributions one can calculate the
from interval to interval. We consider a false alarm when atcumulative probability distributions,
time t the partial activitya(7') was completely inside the ¢
?valanche region, but the large event did not take place at CT(t):E (), 3.1)
imet+1. i=0

With the preceding information, we can calculate the av-
erage of all the prediction assignments, as the number %(nd
false alarms in a given normalized ting®, for all the load-
ing intervals, divided by the total number of loading intervals N
considered. The result is shown in Fig. 8. We can see that in ,
50% of the loading intervals an alarm was issued when those Ce(n)= ;1 P(n’). 3.2
intervals were at about 75% of their corresponding time du- "o

ration. Furthermore, the alarm may be issued when the Ioad—h. h give th babiliti f f | t
ing interval is as early as approximately 50% of its length./ Ich give the probabiliies ot occurrence for a farge event,
etween time¢=0 andt, andn small events, respectively.

With these results, it seems that the low percentage of Iarg%h 't the | t h i d during the i
avalanches erroneously anticipated in the experiment carrie en, 11 Inejarge event has not occurred during the ime

out by Rosendahl, Vekjand Rutledge could be due to poor interval [0,t—1], or aftern—1 small avalanches, the prob-

statistics, since they used only 11 large events. That is, th@bility for it to occur att, or aftern, are giv_en by Eqs(:3.1)
avalanche region may be inaccurate and (3.2). This gives a different perspective regarding pre-

A complementary result is to calculate the distribution OfFiICtIOI’]S of large events; for instance, it is clear that although

times elapsed between the end of a large avalanche and L. Fig. 7 the partial local activity at 90% is insigje the_ ava-
currence of the first false alarm in the following loading in- anche region, a large avalanche may occur at tifg with
terval. This distribution is shown in Fig. 9. We see that the
first alarm may be sound as early as 50% of the interval, or
as late as almost the full interval, with the most probable
value of near 70% of the interval.

0.0012 ¢

B. Method based on probability distributions 0.0008 1

Since we have at our disposal good statistics for this au-
tomaton, we can propose criteria of the prediction of a proba-
bilistic nature. The two distributions that may be used are the
distribution of time intervals between consecutive large ava-
lanchesT(t) (see Fig. 1B and the distribution of small
events during loading interval®(n) (see Fig. 11 In the
formert is the loading timdi.e., the time between consecu-
tive large avalanchésand in the lattern is the number of
small avalanches in a loading interval. Note that these distri-
butions are constructed independent of each other. The dis- FIG. 10. Normalized distribution of time intervals between con-
tribution T(t) gives the probability for a large event to occur secutive large events.

0.0004 1

Distribution of time intervals between
large events

0 1000 2000 3000 4000 5000 6000 7000
t (time steps)
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1000 cal model is the capability of generating large sequences of
events, leading to much better statistics than in laboratory
800 + experiments. For instance, here we built the avalanche region
of Fig. 6 from a run that gave rise to approximately 1000
600 T large avalanches. Moreover, we make our predictions not on
the same set of data, but during the running time of the
400 1 automaton[12]. We found that from a total of 1000 new
loading intervals, in half of them an alarm for large events
was issued when they were at 75% of their time duration.
However, the alarm was sometimes turned on during some
loading intervals at, as earlier as, approximately 50% of their
duration. Furthermore, it may happen that the alarm can be
set, or not, several times during the loading interval. Thus the
algorithm presents a variable number of false alarms; false in
the sense that a large avalanche does not occur att tirhe
although the corresponding activity(7') is completely in-
side the avalanche region at tirhe
a probability given by Eq(3.1). In that particular case, it e indicated in the preceding section that in order to
happened that no large event occurred at timel, but  gptain the avalanche region, only events with sizes equal to
somewhat later. or greater than 99.8% of the size of the systém 4090
~ Figure 10 indicates the existence of a time window out-siteg were considered as large events, and that abotibfLO
side of which a large event will never take place. That isthem were taken into account to obtain the avalanche region.
before t,;~4x10° time steps, and aftetr,,,~6X10° time  \we found that if the avalanche region is built with more
steps, the probability of occurrence of the large event is zerqopading intervals, satisfying the above requirement, it does
Once the minimum number of time steps has passed, thgot change quantitatively. However, if the threshold for an
large event will occur during a time intervatt with a prob-  event to be considered as “large” decreases, the avalanche
ability given by C+(ty,+At). Hence, the probability for the region grows, and therefore the number of false alarms in a
large event to occur during tHepproximately next_2>_<103 loading interval increases too. This in itself should not be
time steps aftet,,, equals one. Therefore, predictions for yorrisome; the problem arises because the probability for the
large events using the distributioi(t) should be done as gccurrence of a large avalanche decreases dramatically with
follows: during the first &4 10° times steps no alarm is is- s size. Thus including a very improbable event in the ava-
sued since one knows for sure that no large event will occufgnche region can have a strong negative effect. That is, a
at any time in that interval; once those first times steps havgyrger avalanche region causes the first false alarm to be
passed, an alarm for large event will be set at any time agsyed, on average, a little earlier and, therefore, the time
long as the probability of occurrence at the next time stepyindow determined in Fig. 9 increases. On the other hand, if
Eq. (3.1), is also given. _ . . . the avalanche region is built with very few events, it would
Figure 11 also shows a kind of “time window" outside of tend to be smaller than it really is, giving inaccurate results.
which a large event never takes place. We see that a minjn Ref. [9], the avalanche region was built with the activity
mum number of about 60 small avalanches must occur fofrom only 11 loading intervals, and its prediction was veri-
the large avalanche to have a nonzero probability of occurfieq with the same data. So, the reported low percentage of
rence. Once that number of small events has passed, the Iarg@ge avalanches erroneously anticipated may be a conse-
event will be one of theapproximately next 390 events. quence of the incompleteness of the avalanche region.
Similarly, with Cp(n) we can calculate the probability that ~ |n Ref. [12], Sammis and Carlson reported results for
the next event will be a large one. three more algorithms using the same data from R
One of them, a modification of the algorithm by Rosendahl,
Vekic, and Rutledge behaves in the same way; the other two
algorithms, a time interval metho(l) and a cumulative
We have studied a cellular automaton whose mean energctivity method(CA), report a lower rate of false alarms. The
H(t), a macroscopic variable, shows a time behavior remarklatter two are similar to the ones discussed tarethod B in
ably similar to those observed in sandpiles. Notably, the enthe preceding sectignSammis and Carlson concluded that
ergy of the automaton, just as the number of grains in darger statistics are needed to quantify the relative perfor-
sandpile, registers the occurrence of large avalanches praance of these algorithms. It is important to point out that in
ceded by a variable large number of much smaller eventorder to avoid that a large event occurs without an alarm, one
Also, the rate of occurrence of the latter, just as in the sandmust choose the minimum threshold from the distributions in
piles, increases as a large avalanche approaches. Fig. 10 and Fig. 11, respectively. For instance, in the TI
Following the algorithm proposed by Rosendahl, Vekic method the threshold must be approximately 4000 times
and Rutledgd9], we studied the possibility to predict the steps since no large event occurs before that time. Together
large events by first defining an avalanche region for thiswith this restriction, it is relevant to know the time window
automaton, see Fig. 6, and looking at the time evolution ofdluring which the large event is expected to occur. In other
the partial activitya(7') during a loading interval between words, once the alarm is set, one must know the probability
two consecutive large events. One of the virtues of a numerifor the large event to take place at a given timafter the

before each large avalanche

200 +

Distribution of number of small events

0 100 200 300 400 500
Number of small events

FIG. 11. Distribution of the number of small events that occur
before large avalanches.

IV. REMARKS
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alarm, and not only say that a major avalanche is imminentpropriate. Nevertheless, because of the difficulty of the prob-
From the results presented here it appears that, even witem, we find it very important to test different phenomeno-
excellent statistics, a probabilistic prediction is the best thatogical ideas or suggestions regarding prediction, such as
one can do at the moment. It also seems obvious that a d&osendahl, Vekicand Rutledge method, in order to develop
terministic description, e.g., a hydrodynamic one, is not posthe intuition and, with luck perhaps, find some kind of regu-
sible at the moment. For instance, there is not a generalllarity on which to build a solid theory, that at present is
accepted constitutive relation, such as stress in terms décking.
strains, in granular material. Thus given the small number of
macroscopic variables uséthe number of grains in the pile
or the energy of the automatprit is not a surprise that the
conclusion is that a probabilistic description is the more ap- This work was supported by Grant UNAM-IN-106694.
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