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We study a cellular automaton that presents a behavior similar to that of avalanches in sand piles. The size
distribution of these events presents a clear separation between small and large avalanches; the former showing
a power-law kind of behavior common to these systems. In this article we compare different schemes of
possible predictions of the large events. One, using an algorithm proposed by Rosendahl, Vekic´, and Rutledge
@Phys. Rev. Lett.73, 537 ~1994!#, follows the activities of small avalanches between consecutive large ava-
lanches; others analyze the distribution of time intervals between consecutive large events, and the distribution
of small events between consecutive large avalanches.@S1063-651X~96!05710-8#

PACS number~s!: 05.40.1j, 46.10.1z, 91.30.Px

I. INTRODUCTION

The predictability of earthquakes is a problem that needs
no justification. The knowledge of the details of a fracture of
a geological fault, however, is beyond present capabilities
either theoretical or experimental. But seismological details
aside, it appears clear that an ubiquitous characteristic of
earthquakes is that there exist long periods of accumulation
of stress, followed by sudden, large, catastrophic events in
which a large displacement of the fault occurs, releasing
large amounts of accumulated energy. The fault is then ‘‘re-
set’’ and the process repeats itself. A further important char-
acteristic is that such a process of loading and releasing, does
not appear to be periodic at all. Compounded with these
problems is the lack of enough data that would allow us to
have some form of prediction based on an analysis of the
statistics of the temporal series of such events; suffice to say
that during the last 100 years there have occurred, in the
whole world, only about 1000 earthquakes with magnitudes
greater than 7 in the Richter scale@1#.

In recent years there has been, in the physics community,
a resurgence in investigating the earthquake problem@2–5#
both with models and with laboratory experiments. Notably,
on the experimental side, research has been focused on the
study of avalanches in sandpiles with a variety of experi-
mental setups, such as, rotating drums@6–8# or grain-by-
grain added sandpiles@9–11#. The obvious relationship with
the earthquake dynamics is the fact that the avalanches also
show a characteristic~aperiodic! loading and releasing pro-
cess. An important feature of laboratory or numerical experi-
ments is that, in principle, it is possible to generate arbitrarily
large time series and, hence, robust statistics.

In a recent article Rosendahl, Vekic´, and Rutledge@9#,
studying the dynamics of grain-by-grain added sandpiles,
proposed an algorithm for prediction of large avalanches

based on the statistics of the small avalanches preceding a
large one. That is to say, their experiment shows that after
adding grains to the pile many small avalanches occur before
every large one is generated, with a clear cut separation as to
the meaning of ‘‘small’’ and ‘‘large’’~see below!. Their sug-
gestion is to use the statistics of the occurrence of the small
avalanches as predictors of the large ones. However, because
of the difficulty of the experiment, Rosendahl, Vekic´, and
Rutledge report only 11 large avalanches and, therefore, the
results of their test cannot be considered conclusive, as Sam-
mis and Carlson@12# have already pointed out. In this article
we analyze the results of a cellular automaton that shows the
same qualitative features as those of real avalanches@13#; we
use it to test different predictability criteria.

Before getting into the details of the prediction methods,
we point out that the present cellular automaton behaves,
from a ‘‘macroscopic’’ point of view, in a remarkably simi-
lar way to sandpiles in a rotating cylinder, as shown in Refs.
@13,14#, and to the classical conical sandpile, as we shall
show here. That is, the time behavior of a global variable in
the automaton, namely, its mean energy, is quite similar to
the time behavior of the angle of the surface in a rotating
cylinder @7,13#, or the number of grains in the classical coni-
cal sandpile@9#.

In a previous report@13#, we also showed that, if we treat
the mean energy of the automaton in a coarse-grained scale
so that only large avalanches are relevant, its evolution is
accurately described as a stochastic Markov process. There is
good evidence, in agreement with actual experiments, that
the same is true for the behavior of the mean angle of the
surface of sand piles in rotating cylinders@7#. Thus the study
of the automaton has been useful to achieve a better under-
standing of the statistical dynamics of the sandpile in the
rotating drum experiment.

As we shall show, the automaton also has the ability to
reproduce the macroscopic behavior of avalanches in the
conical sandpiles. That is, it shows the occurrence of large,
catastrophic events preceded by many small ones. Due to
this similarity, and to the fact that we get much better statis-
tics in less time, we use the automaton to evaluate the pre-
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diction algorithm reported by Rosendahl, Vekic´, and Rut-
ledge @9# mentioned above, based on the activity of the
system preceding a large event. We also discuss two more
different possibilities to predict large events by considering
the time elapsed since the last large event occurred, and the
number of small events before a large one. See also Ref.
@12#.

In a sense, the general result of this study is on the nega-
tive side. That is, as we shall show, it appears that none of
the methods is capable of predicting with acceptable confi-
dence. A combination of all of them would probably be more
appropriate. However, we do not believe that the problem
lies in the different methods, but rather, the ‘‘failure’’ may
result because the observed variable~the angle of the pile,
the number of grains in the pile, or the energy of the automa-
ton!, behaves as a stochastic process. And this, being a con-
sequence of having averaged out the complicated dynamics
of the many small degrees of freedom beneath the global
variable. These conclusions seem to be supported by the fact,
mentioned above, that in a coarse-grained scale the large
avalanches are very accurately described as a Markov pro-
cess. But given the richness of the phenomena at hand, we
cannot completely rule out a~nonlinear! deterministic de-
scription nor a predictive method based on the time statistics
of the events. To add to the elucidation of these different
aspects is part of the motivation and relevance of the present
study.

II. THE AUTOMATION

Although the description of the automaton has been given
in other reports@7,13,15#, it is included here for complete-
ness. The automaton is defined by anN3N lattice where at
each site (i , j ) a scalar quantityhi j , called here ‘‘energy,’’ is
defined. At every time step, a fixed amount of energye is
added to a randomly chosen site. If the energy of the site is
below a given thresholdhc , time is advanced one unit and
another site is chosen at random; otherwise, the site breaks,
passes its energy in equal parts to its nearest unbroken neigh-
bors, and has its energy reset to zero. The event or avalanche
will propagate if the energy of a site, by means of receiving
energy from a broken one, reaches or exceeds the threshold
hc . In this case, the site also breaks, and distributes its en-
ergy to its nearest unbroken neighbors. The propagation of
the event halts when there is no site with energy abovehc ;
then, time is advanced one unit. While the avalanche is in
progress, time is not advanced at all and broken sites remain
in that state. It is of interest to point out that in the experi-
ments of Rosendahl, Vekic´, and Rutledge@9# ‘‘time’’ has the
same meaning as here: ‘‘time’’ is advanced until the ava-
lanche has finished. Because all energy quantities can be
normalized withhc , the threshold for rupture is always set to
1.0. Thuse, and anyhi j are less than one. Results reported
here were obtained withe50.25, andN564.

There are two mechanisms for the system to lose energy.
The first one takes place when sites at the border break.
Related to these sites, there are two kinds of neighbors;~a!
those laying on the lattice, and~b! hypothetical ones outside
of the lattice. The rule allows sites at the border to pass part
of their energy to such hypothetical sites too. The second
mechanism takes place when a site, not located at the border,

breaks having no unbroken neighbors able to receive its en-
ergy since they have already been broken during the process.
In such a case, and due to the fact that no site can remain
with its energy above the thresholdhc , the rule forces the
site to lose its energy, which is simply dissipated out of the
system. While the first energy-dissipation mechanism looks
like a natural way for the system to lose energy, resembling
the loss of grains in a pile, the second one is inspired by the
fracture of a fault in which a stressed site breaks releasing its
energy to the surrounding medium@15#. From the point of
view of the automaton, these rules are consistent with the
condition that broken sites must remain in such a state during
the evolution of an avalanche. If this rule is removed, that is,
if broken sites can be ‘‘healed’’ during the avalanche, then,
the automaton displays very different macroscopic behavior
from the one we are interested in@15#; as a matter of fact, it
then shows self-organized criticality@16#, and it has been
shown that avalanches in granular media do not belong to
this class@17#.

It turns out that, with the rules given above, avalanches
can be classified as small or large. An avalanche is consid-
ered as large if it covers practically the whole system; oth-
erwise it falls into the small category. We find that a large
event means that its size is at least 96% of the size of the
lattice, and a small event means that it covers at most 25% of
the size of the lattice. Events whose sizes fall outside these
ranges are seldom seen~see Fig. 1!. While the size of the
large avalanches is almost independent of the value ofe, the
size of the small avalanches does depend on it: The smaller
the value ofe, the smaller the sizes of the small avalanches.
For instance, as shown in Fig. 1, fore50.15 the maximum
size of the small events is approximately 35, while with
e50.25 and 0.75 it is 200 and 1200, respectively. We de-
cided to usee50.25 for the calculations of this work, as a
compromise of being small enough to represent a somewhat
continuous load of the system, but not too small as far as
computing time is concerned, and at the same time having a
clear cut separation between small and large avalanches. We
also mention that the dissipative mechanism in an isolated
nonborder site, occurs essentially during large avalanches
only; thus it does not influence the avalanche size distribu-
tion.

The ‘‘experimental output’’ of the automaton is the time
evolution of the total energy, normalized by the size of the
system; that is, the mean energy per site given by

FIG. 1. Normalized size distributionsP(s) of avalanches of size
s broken sites fore50.15, 0.25, and 0.75. Base of log is 10.
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The evolution ofH(t), the macroscopic variable, resembles
an irregular sawtooth type of behavior characterized by load-
ing time intervals limited by two large events. During each
loading interval, small avalanches occur most of the time;
some of them taking away energy from the system and oth-
ers just redistributing it. Figure 2 shows a typical time se-
quence ofH(t); at the scale of the figure, small events are
not visible. As the energy of the system increases, the prob-
ability for an avalanche to propagate through the whole sys-
tem becomes larger. The higher the energy of the system is,
the more frequent the small events are, until a large event
resetsH to zero.

For each avalanche, we determine its size, defined as the
number of sites involved in an event, from which we calcu-
late the normalized size distribution. Figure 3 shows such a
distribution, fore50.25, obtained from a run of the automa-
ton of about 7.53108 time steps involving approximately
2.93107 events of any size; 0.5% of them being large events.
The separation of small and large avalanches is clear; for this
run, there were scarcely 100 avalanches of size in the range
of 2% to 97% of the size of the system~that is, between 100
to 4000!, which implies that the probability for an event of a

size in this range is negligible~,1027!. The distribution of
small avalanches follows a power-law decay behavior, com-
mon to these systems@9,15,18#, with an exponent equal to
3.560.04

III. PREDICTION METHODS

Given the irregularity of the occurrence of large ava-
lanches in the experimental situations discussed above and in
the automaton as well, the problem seems to be a formidable
one as far as the prediction is concerned. But, as Rosendahl,
Vekić, and Rutledge observed, the rate of occurrence of
small avalanches increases very rapidly as a large avalanche
is imminent, and the suggestion is to monitor the small ac-
tivity in order to see some kind of regularity that would
allow us to predict the occurrence of the large events. In this
section, we discuss two types of predictive criteria. One is
that used by Rosendahl, Vekic´, and Rutledge@9# and the
other is a probabilistic approach based on the statistics of the
process.

A. Activity algorithm

Following Rosendahl, Vekic´, and Rutledge@9#, we define
the total activityA(t) as the cumulative number of events of
any size as a function of time, given that att50 a large event
took place. Figure 4 shows a typical output forA(t). There is
a remarkable similarity with the corresponding figure shown
in Ref. @9#. One can observe thatA(t) is a function whose
slope changes discontinuously when a large avalanche oc-
curs. That is, after a large event has taken place, the system
is left with no energy~in the sandpile, it is left at an angle of
repose!; thus, it takes some time for all the empty sites to get
some energy and small events are not very frequent: the
slope of A(t) is very flat after a large event. As time
progresses, the system acquires a higher load and the rate of
small events also increases, the slope ofA(t) becoming
steeper, until a large avalanche releases the accumulated en-
ergy of the system. And again, the slope ofA(t) changes
discontinuously.

In order to make an analysis of the activityA(t), and
since the loading intervals between consecutive large ava-
lanches have different durations in time, we normalize the
latter as follows@9#: Consider a given interval between the

FIG. 2. Mean energy per siteH(t) as a function of time step
showing buildup periods ending with a large event. Changes in
H(t) due to small avalanches cannot be seen at this scale.

FIG. 3. Normalized size distributionP(s) of avalanches of size
s broken sites fore50.25. Small avalanches scale according to a
power-law decay with exponent 3.560.04. Base of log is 10.

FIG. 4. Total cumulative number of eventsA(t), regardless of
their size, as a function of time step. Discontinuities on the slope
indicate the occurrence of a large event.
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occurrence of two large avalanches. LetDM be the total
number of avalanches in such an interval, and letDT be its
duration. Next, at every time step within the given loading
interval, we definea~t!, as the fraction of events that have
occurred up to that time, witht the time fraction of the
interval at that time step. That is, the cumulative number of
events is normalized withDM , and the time withDT. We
call a~t! the activity of the given interval. Figure 5 shows
two particular activitiesa~t! obtained from a run of 53106

time steps involving about 103 loading intervals. Also shown
in this figure is the averageā~t! of the activities for all the
loading intervals. As is the case with the grain-by-grain
added sandpile@9#, ā~t! also follows a power law; in the
present case the exponent is 3.160.04.

If we now plot all the activities of the 103 loading inter-
vals used to obtain the averageā~t!, then, we see that the
plane~t,a! is divided into three regions@9#. One region lies
above the upper envelope of all thea~t!’s, the second region
lies below the lower envelope, and the third one—called the
avalanche region—is bounded by the two envelopes~see Fig.
6!. Since the probability of occurrence for a large event
whose size is equal to, or less than, 99.8%~54090! of the
system’s size is three orders of magnitude less than the prob-

ability for an event of the size of the system~Fig. 3!, the 103

avalanches used here were of size equal to, or greater than,
99.8% of the system’s size. The effect that the choice of this
threshold has on the avalanche region, and therefore on the
results obtained when applying this algorithm, will be dis-
cussed in Sec. IV.

The prediction method consists in following the activity
of an interval after a large event has taken place. Then, by
using the information given in Fig. 6, decide whether or not
a large avalanche will occur in the next time step, thus
sounding an alarm. This is done as follows: LetDM 8 and
DT8 be the current number of small events and the current
time, respectively, after a large avalanche has occurred. Let
us now definea~t8! as the fraction of events that have oc-
curred up to the fraction timet8, with a normalized with
DM 8, andt8 with DT8. We calla~t8! the partial activity of
the interval. As the end of an interval comes near, that is, as
a large avalanche approaches,a~t8! should become closer to
its correspondinga~t!. Hence, there may be some threshold
to distinguish an interval that is about to end from an interval
that is far from its end. In other terms, when plottinga~t8!
one may expect that, if the corresponding interval is near to
its end,a~t8! should be inside the avalanche region.

Following Rosendahl, Vekic´, and Rutledge an alarm for a
large avalanche is issued if the currenta~t8! is completely
within the avalanche region. Figure 7 shows partial activities
at 40, 60, 80, and 90% of the total duration of the interval
corresponding to the firsta~t! shown in Fig. 5, compared to
the avalanche region. It is seen in this figure that for 40% and
60% of the loading interval a small part of the curve is out-
side the avalanche region just at the very end of the interval;
yet, the large avalanche is far from taking place. Now, for the
80% and 90% cases, the curves are completely inside the
avalanche region, which just indicates that the large event
will take place soon, but it is certainly not imminent.

In order to evaluate how reliable it is to sound the alarm
when the partial activity is within the avalanche region, we
determined an average prediction for large avalanches in the
following way: We let the automaton run for 53106 time
steps that involved about 103 loading intervals. After every
small avalanche in a given loading interval, the correspond-

FIG. 5. Activities of two intervals taken from a particular run of
the automaton, and the averagea~t!, solid line, of all the interval
activities in that run as functions of the normalized time stept ~see
text for details!. The latter scales according to a power law with
slope 3.660.04.

FIG. 6. Envelopes of the interval activities defining the ava-
lanche region for the automaton~see text for details!; also shown is
the averagea~t! of the activities, dashed line.

FIG. 7. Partial activities, from one of the interval activities
shown in Fig. 5, at 40, 60, 80, and 90% of the interval compared to
the avalanche region~AR! ~see text for details!. The first two are
not completely inside the avalanche region.
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ing partial activitya~t8! is constructed. Ifa~t8! is completely
within the avalanche region, a YES or 1 value is assigned to
that time; otherwise a NO or 0 value is used. At the end of
the interval, time is normalized using its time duration. As
expected, it turns out that the number of false alarms varies
from interval to interval. We consider a false alarm when at
time t the partial activitya~t8! was completely inside the
avalanche region, but the large event did not take place at
time t11.

With the preceding information, we can calculate the av-
erage of all the prediction assignments, as the number of
false alarms in a given normalized time~t!, for all the load-
ing intervals, divided by the total number of loading intervals
considered. The result is shown in Fig. 8. We can see that in
50% of the loading intervals an alarm was issued when those
intervals were at about 75% of their corresponding time du-
ration. Furthermore, the alarm may be issued when the load-
ing interval is as early as approximately 50% of its length.
With these results, it seems that the low percentage of large
avalanches erroneously anticipated in the experiment carried
out by Rosendahl, Vekic´, and Rutledge could be due to poor
statistics, since they used only 11 large events. That is, the
avalanche region may be inaccurate.

A complementary result is to calculate the distribution of
times elapsed between the end of a large avalanche and oc-
currence of the first false alarm in the following loading in-
terval. This distribution is shown in Fig. 9. We see that the
first alarm may be sound as early as 50% of the interval, or
as late as almost the full interval, with the most probable
value of near 70% of the interval.

B. Method based on probability distributions

Since we have at our disposal good statistics for this au-
tomaton, we can propose criteria of the prediction of a proba-
bilistic nature. The two distributions that may be used are the
distribution of time intervals between consecutive large ava-
lanchesT(t) ~see Fig. 10!, and the distribution of small
events during loading intervals,P(n) ~see Fig. 11!. In the
former t is the loading time~i.e., the time between consecu-
tive large avalanches!, and in the latter,n is the number of
small avalanches in a loading interval. Note that these distri-
butions are constructed independent of each other. The dis-
tributionT(t) gives the probability for a large event to occur

between timest and t11, given that at timet50 a large
event took place, while the distributionP(n) gives the prob-
ability that a given interval will haven small events before
the large one. From these distributions one can calculate the
cumulative probability distributions,

CT~ t !5(
i50

t

T~ i !, ~3.1!

and

CP~n!5 (
n851

n

P~n8!, ~3.2!

which give the probabilities of occurrence for a large event,
between timest50 and t, andn small events, respectively.
Then, if the large event has not occurred during the time
interval @0,t21#, or after n21 small avalanches, the prob-
ability for it to occur att, or aftern, are given by Eqs.~3.1!
and ~3.2!. This gives a different perspective regarding pre-
dictions of large events; for instance, it is clear that although
in Fig. 7 the partial local activity at 90% is inside the ava-
lanche region, a large avalanche may occur at timet11 with

FIG. 10. Normalized distribution of time intervals between con-
secutive large events.

FIG. 8. Average of large event predictions as a function of the
normalized time stept ~see text for details!. The curve was obtained
taking into account 1000 loading intervals.

FIG. 9. Distribution of the time elapsed between the last large
event and the first false alarm in the next loading interval. Time is
given in terms of the percentage of the length of the interval.
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a probability given by Eq.~3.1!. In that particular case, it
happened that no large event occurred at timet11, but
somewhat later.

Figure 10 indicates the existence of a time window out-
side of which a large event will never take place. That is,
before tmin'43103 time steps, and aftertmax'63103 time
steps, the probability of occurrence of the large event is zero.
Once the minimum number of time steps has passed, the
large event will occur during a time intervalDt with a prob-
ability given byCT~tmin1Dt!. Hence, the probability for the
large event to occur during the~approximately! next 23103

time steps aftertmin , equals one. Therefore, predictions for
large events using the distributionT(t) should be done as
follows: during the first 43103 times steps no alarm is is-
sued since one knows for sure that no large event will occur
at any time in that interval; once those first times steps have
passed, an alarm for large event will be set at any time as
long as the probability of occurrence at the next time step,
Eq. ~3.1!, is also given.

Figure 11 also shows a kind of ‘‘time window’’ outside of
which a large event never takes place. We see that a mini-
mum number of about 60 small avalanches must occur for
the large avalanche to have a nonzero probability of occur-
rence. Once that number of small events has passed, the large
event will be one of the~approximately! next 390 events.
Similarly, with CP(n) we can calculate the probability that
the next event will be a large one.

IV. REMARKS

We have studied a cellular automaton whose mean energy
H(t), a macroscopic variable, shows a time behavior remark-
ably similar to those observed in sandpiles. Notably, the en-
ergy of the automaton, just as the number of grains in a
sandpile, registers the occurrence of large avalanches pre-
ceded by a variable large number of much smaller events.
Also, the rate of occurrence of the latter, just as in the sand-
piles, increases as a large avalanche approaches.

Following the algorithm proposed by Rosendahl, Vekic´,
and Rutledge@9#, we studied the possibility to predict the
large events by first defining an avalanche region for this
automaton, see Fig. 6, and looking at the time evolution of
the partial activitya~t8! during a loading interval between
two consecutive large events. One of the virtues of a numeri-

cal model is the capability of generating large sequences of
events, leading to much better statistics than in laboratory
experiments. For instance, here we built the avalanche region
of Fig. 6 from a run that gave rise to approximately 1000
large avalanches. Moreover, we make our predictions not on
the same set of data, but during the running time of the
automaton@12#. We found that from a total of 1000 new
loading intervals, in half of them an alarm for large events
was issued when they were at 75% of their time duration.
However, the alarm was sometimes turned on during some
loading intervals at, as earlier as, approximately 50% of their
duration. Furthermore, it may happen that the alarm can be
set, or not, several times during the loading interval. Thus the
algorithm presents a variable number of false alarms; false in
the sense that a large avalanche does not occur at timet11,
although the corresponding activitya~t8! is completely in-
side the avalanche region at timet.

We indicated in the preceding section that in order to
obtain the avalanche region, only events with sizes equal to
or greater than 99.8% of the size of the system~> 4090
sites! were considered as large events, and that about 103 of
them were taken into account to obtain the avalanche region.
We found that if the avalanche region is built with more
loading intervals, satisfying the above requirement, it does
not change quantitatively. However, if the threshold for an
event to be considered as ‘‘large’’ decreases, the avalanche
region grows, and therefore the number of false alarms in a
loading interval increases too. This in itself should not be
worrisome; the problem arises because the probability for the
occurrence of a large avalanche decreases dramatically with
its size. Thus including a very improbable event in the ava-
lanche region can have a strong negative effect. That is, a
larger avalanche region causes the first false alarm to be
issued, on average, a little earlier and, therefore, the time
window determined in Fig. 9 increases. On the other hand, if
the avalanche region is built with very few events, it would
tend to be smaller than it really is, giving inaccurate results.
In Ref. @9#, the avalanche region was built with the activity
from only 11 loading intervals, and its prediction was veri-
fied with the same data. So, the reported low percentage of
large avalanches erroneously anticipated may be a conse-
quence of the incompleteness of the avalanche region.

In Ref. @12#, Sammis and Carlson reported results for
three more algorithms using the same data from Ref.@9#.
One of them, a modification of the algorithm by Rosendahl,
Vekić, and Rutledge behaves in the same way; the other two
algorithms, a time interval method~TI! and a cumulative
activity method~CA!, report a lower rate of false alarms. The
latter two are similar to the ones discussed here~method B in
the preceding section!. Sammis and Carlson concluded that
larger statistics are needed to quantify the relative perfor-
mance of these algorithms. It is important to point out that in
order to avoid that a large event occurs without an alarm, one
must choose the minimum threshold from the distributions in
Fig. 10 and Fig. 11, respectively. For instance, in the TI
method the threshold must be approximately 4000 times
steps since no large event occurs before that time. Together
with this restriction, it is relevant to know the time window
during which the large event is expected to occur. In other
words, once the alarm is set, one must know the probability
for the large event to take place at a given timet after the

FIG. 11. Distribution of the number of small events that occur
before large avalanches.

54 3493TESTING PREDICTABILITY CRITERIA IN AVALANCHES



alarm, and not only say that a major avalanche is imminent.
From the results presented here it appears that, even with

excellent statistics, a probabilistic prediction is the best that
one can do at the moment. It also seems obvious that a de-
terministic description, e.g., a hydrodynamic one, is not pos-
sible at the moment. For instance, there is not a generally
accepted constitutive relation, such as stress in terms of
strains, in granular material. Thus given the small number of
macroscopic variables used~the number of grains in the pile
or the energy of the automaton!, it is not a surprise that the
conclusion is that a probabilistic description is the more ap-

propriate. Nevertheless, because of the difficulty of the prob-
lem, we find it very important to test different phenomeno-
logical ideas or suggestions regarding prediction, such as
Rosendahl, Vekic´, and Rutledge method, in order to develop
the intuition and, with luck perhaps, find some kind of regu-
larity on which to build a solid theory, that at present is
lacking.
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